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1 Introduction 

The flexibility of manufacturing processes is one of the major conditions for 
increasing the competitiveness of the factory of the future, in the current conditions of 
competition. The essential support for the design of flexible production lines is a 
combination of modelling and simulation. Modelling and simulation provide the facility 
to create, test, compare and optimize manufacturing processes with minimal costs, 
before they are physically built. Also, the models are primary artefacts for the 
generation of software components that coordinate and supervise the physical 
manufacturing process. Thus, the manufacturing process becomes an arrangement of 
workstations and transportation units coordinated and supervised by a computer 
system generated from an optimized model, which is able to adapt, with a minimum of 
human intervention in order to manufacture a range of products. 

The efficient specification of a model, to be a primary artefact, requires a 
description of the properties of the system in an appropriate modelling language. 
Therefore, the language chosen to specify a model must facilitate the representation of 
this model in a clear, simple form that concentrates all the information necessary to 
achieve the goal. Contemporary models are characterized by a great diversity and 
complexity, which makes it impossible to specify them only with existing languages. 
Thus, there is a need to build new modelling languages, i.e. there is a need to develop 
domain-specific modelling languages (DSML), which would allow the efficient 
specification of all concepts in the field of modelling [Fowler2010]. The development of 
DSMLs thus becomes an integral part of the modelling process. 

For a modelling language to be usable, it must be integrated into a modelling tool. 
The reference model of a modelling tool is, in our case, the concept of a modelling 
method that abstracts and integrates the components of a modelling tool. 

A modelling method however is a concept [Karagiannis&Kühn2002, Bork2019] 
that consists of two components: (1) a modelling technique, which is divided in a 
modelling language and a modelling procedure, and (2) mechanisms & algorithms 
working on the models described by a modelling language. The modelling language 
contains the elements with which a model can be described. The modelling procedure 
describes the steps applying the modelling language to create results, i.e., models. 
Algorithms and mechanisms provide “functionality to use and evaluate” models 
described by a modelling language. Combining these functionalities enables the 
structural analysis, as well as the simulation of models. 

The modelling tool that implements the concept of modelling method presented 
in [D3.3] we called it the Digital Production Planner Tool (DPPT) and we implemented it 
on the ADOxx metamodeling platform. The main component of this tool is the Modelling 
Language for Manufacturing Processes (MLMP), which we will present in the following. 
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2 The MLMP Language 

We will define a Modelling Language for Manufacturing Processes (MLMP) 
designed specifically for specifying and optimizing manufacturing processes. MLMP is a 
language for modelling manufacturing processes to represent the logical and functional 
dependencies of the activities of a manufacturing process. The objective of the MLMP 
language is the conceptual integration of the functional perspective of the 
manufacturing processes in order to optimize them. The language is addressed to the 
Digital Production Planner (DPP). 

The tool should support the user to find a solution to a design problem. A design 
problem is formulated as an assortment of products characterized by the type of 
material and quantity that must be produced under some time and cost constraints. 

Because the most intuitive form of a model is the diagrammatic one, we chose to 
build a diagrammatic language. 

Diagrammatic models are, generally, graphs with certain constraints on their 
components, in which nodes and arcs are interpreted as a concept in the field of 
modelling [Wolter2015, Karagiannis2016]. Designing a new visual DSML involves 
defining the syntax and semantics of the modelling domain. Defining the syntax of a 
DSML involves associating atomic concepts in the modelling domain with suggestive 
visual symbols and defining formal rules for composing these atomic concepts into 
complex concepts. Defining the semantics of modelling languages involves defining a 
semantic domain and mapping syntactic constructions to this semantic domain. 
Therefore, the syntax of a language is a way of expressing and manipulating semantics. 

The modelling language will have to provide mechanisms for specifying the static 
dimension of a model and the modelling instrument will have to include mechanisms 
and algorithms for simulating the behavioural dimension of the model. Both dimensions 
of a model, the static dimension and the behavioural dimension, are characterized by 
syntax and semantics. The atomic concepts in the specific domain of MLMP language 
modelling are: Buffers, Workstations, Transport Machines and Ports. 

In Fig. 1 we have an example of a manufacturing process model specified in terms 
of the MLMP language integrated in the Digital Production Planner Tool. The specified 
model contains: two transporters, namely, a conveyor (Conveyor1) and a manipulator 
(Manipulator1); a workstation (Workstation1) and six buffers and all these components 
are connected via material ports. The conveyor transports materials from buffer B1 to 
buffer B2. The manipulator alternately transports materials from buffers B3 and B4 to 
buffers B5 and B6. The workstation is fed from buffer B2, processes these materials and 
deposits the processing result in buffers B3 and B4. 
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Fig.1. An example of an MLMP model 
 

2.1 MLMP Syntax 
A diagrammatic model is characterized by two dimensions, a static dimension and 

a behavioural dimension. Both dimensions of a model must be specified by its own 
syntax. In the case of the MLMP language, the behavioural dimension is specified 
formally, syntactically and semantically, at the metamodel level and is included in the 
algorithms and mechanisms component of the modelling method concept [D3.3]. 

Defining the syntax of the static dimension of a model involves associating 
suggestive notations to atomic concepts in the specific domain of modelling, which will 
also be the lexical atoms of the MLMP language. Therefore, the atomic concepts of the 
language will be Buffers, Workstations, Transport Machines and Ports, which will be 
represented graphically as the nodes of a graph, and the relations between them will be 
represented by the arcs of the graph. 

Buffers are temporary warehouses in the manufacturing flow and are 
characterized by the type of material they can store, by the maximum amount of 
materials they can store and by the amount stored at a time. These features will be 
syntactically denoted by attribute names. Buffers are components that store material 
without transforming it, so it must have all material ports of the same type. The 
maximum buffer capacity is fixed and cannot be extended (constant attribute). Their 
variable attribute is the current content, which can vary between 0 and the maximum 
capacity. The buffer cannot be loaded above the maximum capacity and cannot be 
unloaded if it is empty. Buffers are passive components, they are filled and emptied by 
other components with which they are connected. 
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In Fig. 2 we can see the symbolic notation that we attributed to this type of 
component. Attribute names are: Name, MaterialType, Capacity, OccupiedCapacity. 

 
Fig. 2. Buffer notation 

 
Workstations are the components that perform the operations of assembling 

subassemblies or transforming some material entities into other material entities. These 
concepts are components in the manufacturing flow characterized by the types and 
quantities of input material and by the types and quantities of output materials for each 
operation that can be performed in that workstation. 

Workstation are components that transform materials. So, they must have at least 
one input and one output port of different type. They must allow the definition of 
operations that describe how many units of which materials are needed and which 
number of units based on which materials are produced through this operation. 

In Fig. 3 we can see the symbolic notation that we attributed to this type of 
component. Attribute names are: Name, Duration, OperationCode, and a set of 
component records (MaterialType, MaterialAmountIn, MaterialAmountOut).  

 
Fig.3. Workstation notation 

 
Transport machines are components of the manufacturing flow that transport 

material entities between workstations, in principle from one buffer to another. These 
concepts are components in the manufacturing flow characterized by the types and 
quantities of materials that can be transported from one buffer to another. 

Transport machines are components that transfer material without transforming 
it. They only change the position of material from the input buffer to the output buffer. 
So, they will have at least one material input port and output port for each material that 
is transported and the mass balance must be respected on the same material – number 
of entering units = number of exiting units.  

The conveyers transport only one material so all ports are of the same type and 
the defining characteristics is the throughput – number of material units transported in 
the time unit.  

The automated guided vehicle (AGV) is practically a mobile buffer. It has all 
attributes and behaviour of a buffer, but it can connect and disconnect its ports from 
the corresponding ports of buffers and can move between preprogramed positions.  
Also, it is an “active” component, initiating the loading unloading actions as soon as it is 
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docked on buffer. So, all considerations concerning the interaction between buffers and 
components apply here. 

The manipulator is a flexible transporter that can transfer multiple types of 
materials between different in and out ports of the same type.  The most usual example 
is a manipulator that can handle different types of material moving them between 
different sub lines.  There must be at least an in out pair of ports for each material type 
that is handled by the manipulator. At one moment the manipulator works only 
between one pair of ports of the same type. 

In Fig. 4 we can see the symbolic notation that we attributed to the three types of 
conveyors, namely Fig. 4a contains the notation for the conveyor type, Fig. 4b contains 
the notation for the AGV type, and Fig. 4c contains the notation for the manipulator 
type. The attribute names for the conveyor type are: Name, MaterialType, CapacityUnit, 
Capacity, TransportTime, OperationCode, and for the manipulator and AGV types there 
is a simple Name attribute and a set of structured records (MaterialType, 
TransportQuantity, TransportTime, OperationCode). 

 
       a. Conveyor                              b. AGV                                 c. Manipulator 

Fig.4. Transport machines notations 
 

Ports are the components in the manufacturing flow that connect the flow of 
output material entities from the components with corresponding inputs to other 
components. These concepts are components in the manufacturing flow characterized 
by the types of materials and the direction of entry or exit. In Fig.5. we can see the 
symbolic notation that we attributed to this type of component. Attribute names are: 
MaterialKind, PortName, PortDirectionType. 

MLMP diagrammatic models are graphs G = (X, Γ), where X is a set of nodes such 
as Buffers, Workstations, Transport Machines and Ports and the arcs represent the flow 
of entities between these components. The syntax of these models imposes constraints 
such as: the model has to be represented by a connected graph; any two components 
are connected by at most one arc; between any two components there must be a port 
component etc. These syntactic restrictions are introduced at the metamodel level 
[D3.3]. 

 
Fig.5. Material port notation 

 
The control elements are components that transfer only information, so that they 

have only information ports - not necessarily all of the same information type. The 
control element is the ideal point for interfacing the model with other modules. The 
control element executes the control algorithm. The program reads feedback messages 
from the process from the input ports or commands from other command items.  
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Depending on the current status and inputs, commands are generated, that are placed 
at outputs. 

In Fig. 6 we can see the notations used for the control elements (Fig. 6a) and the 
information ports (Fig. 6b).  

 
                                       a. Control element              b. Information port 

Fig. 6. Control element and information port notation 
 

MLMP is a graphical language for describing manufacturing processes at the level 
of manufacturing logic, easy to understand and use. 

Not any graph that has the nodes made of concepts specific to a manufacturing 
process (workstations, transport systems, collection buffers and ports) is a correct 
manufacturing model. For example, the graph must be connected and may not have 
more than one arc between two elements, etc. 

We will define an MLMP model as a graph with a set of syntactic restrictions.  
A MLMP model is a directed graph 𝓖𝓖 = (X, Γ, σ, θ) where 

X is a set of objects (concepts in our model) that represent the nodes of the graph. 
Γ is a set of arcs (connections in our model).  
And which satisfies the following properties: 

1. 𝓖𝓖 is a connected graph 
2. There is only one arc between any two nodes. 
3. On the set of nodes X we have a partition. This means that each node of type X of the 

graph will represent in the Set category a distinct set of objects of the same type and 
these sets are disjoint two by two. If we denote the disjoint union with ⊔ then:  
X=XWS ⊔XTS⊔XBF⊔XMP⊔XIP; 
where 
XWS is a set of workstations for the primary components;  
XTS is a set of transport systems for material components; 
XBF is a set of collection buffers for material components; 
XMP is a set of material ports; 
XIP is a set of information ports. 

4. σ and θ are functions σ,θ:Γ→X which assigns to each arc r∈Γ the source and target 
objects σ(r), θ(r)∈X. Each node of type Γ from the graph of the sketch will represent 
in the Set category a set of arcs between the specific concepts of the models, a set 
characterized by the source concept and the target concept. Therefore, Γ is a subset 
of the union of all the pairs of concepts that interact with each other:  
Γ⊆(XWS×XMP)∪(XMP×XWS)∪(XBF×XMP)∪(XMP×XBF)∪(XTS×XMP)∪(XMP×XTS) 
∪(XIP×XWS)∪(XIP×XTS)∪(XIP×XBF). 
The set Γ of arcs of a model is partitioned into disjoint subsets as follows: 
Γ=ΓWSMP⊔ΓMPWS⊔ΓBFMP⊔ΓMPBF∪ΓTSMP∪ΓMPTS ⊔ΓIPWS⊔ΓIPTS⊔ΓIPBF 

5. The XTS set is also partitioned into disjoint subsets:   
XTS = XAVG⊔XCBP⊔XMAN where  
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XAVG  is a set of  automated guided vehicles 
XCBP  is a set of conveyors, belts, pipes 
XMAN  is a set of manipulators 

As we can see the syntactic definition of an MLMP model, introduces a series of 
partitions on the set of concepts and connections, as well as sub partitions on the set of 
transport systems. In addition, the definition includes connection constraints and a 
limited number of arcs between different types of nodes. 

The static dimension of an MLMP model is a graph with nodes of the types 
described above, i.e. Buffers, Workstations, Transport Machines and Ports that are 
endowed with attributes specific to each type. Although the behavioural dimension of a 
model is dependent on the static dimension, it still reflects the running model, i.e. its 
transition from one static instant to another. Therefore, each instant of the static 
dimension represents a state of the model. The transition from one state to another will, 
in our approach, have to be made by a set of behavioural rules that make up the 
behavioural dimension of the model. We defined behavioural syntax at the metamodel 
level by behavioural signatures [D3.3]. 

2.2 MLMP Semantics 
 
The atomic concepts described in section 2.1 are in accordance with the principles 

of designing flexible manufacturing systems as structure and operations are integrated 
from a syntactic point of view. They propose structures based on autonomous, 
distributed, cooperative and intelligent components, which can be assembled to 
perform the specific functions of manufacturing processes. The manufacturing process 
specification mechanism is based on the top-down functional breakdown of the system 
into specific components, configurable by attribute values. 

The semantics of the static dimension is characterized by the values of the attributes 
and the graph structure of the model, and is therefore defined by mapping the attributes 
to data domains and the syntactically correct graph structures to known structures such 
as sequential structures, joins, forks, etc. 
The mapping of the attributes to the data domains: 
Buffers – Name:string, MaterialType:string, Capacity:integer, OccupiedCapacity:integer 
In Fig.7. we can see how to customize a buffer component. 

 
Fig. 7. Buffer customization 
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Workstations – Name:string, (MaterialTypeIn:string, MaterialAmountIn:integer, 
MaterialTypeOut:string, MaterialAmountOut:integer, Duration:time):record, 
OperationCode:longstring 
In Fig.8. we can see how to customize a workstation component. 

 
Fig.8. Workstation customization 

 
Transport Machines - Customization is done according to the attributes defined for each 
type of transport machine. 
Conveyors are characterized by the attributes: Name: string, (MaterialType: string, 
CapacityUnit: integer, Capacity: integer, TransportTime: time, OperationCode: 
longstring): record 
In Fig. 9 we can see how to customize a conveyor component. 
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Fig.9. Conveyor customization 

 
Transport machines of type Manipulator are characterized by the attributes: Name: 
string, (MaterialType: string, TransportQuantity: integer, TransportTime: time, 
OperationCode: longstring): record 
In Fig. 10 we can see how to customize a manipulator component. 



Public D3.4. Design (modelling) tool for the Factory of the Future 
 

 

 Page 12   
 
 

 
Fig.10. Manipulator customization 

 
Transport machines of type AGV are characterized by the attributes: Name: string, 
(MaterialType: string, TransportQuantity: integer, TransportTime: time, OperationCode: 
longstring): record 
In Fig.11. we can see how to customize an AGV component. 
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Fig. 11. AGV customization 

 
Ports - Port type components are characterized by the attributes: Name: string, 
MaterialKind: string, PortName: string, PortDirectionType: enum {Incoming, Outgoing}, 
Direction {Right, Left, Up, Down}. 
In Fig. 12 we can see how to customize a port component. 
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Fig.12. Port customization 

 
The semantics of the behavioural dimension captures the behaviour of the active 

components of the model. In the case of the MLMP language, the semantics of the 
behavioural dimension was implemented at the metamodel level through two 
behavioural rules that simulate the behaviour of the two types of active components, 
workstation and transport machine. 

Each workstation is fed from one or more input buffers and deposits the 
processing result in one or more output buffers that have limited capacities. A 
workstation works asynchronously if it has raw material in the input buffers and enough 
space in the output buffers. If one of these conditions is not met, the station stops and 
will start automatically when the conditions are met. The processing operation has a 
certain duration. 

Each transport machine has a limited transport capacity and can transport several 
types of components in specified quantities. A transport machine works asynchronously 
if it has enough parts in the input buffer and also has enough space in the output buffer. 
If one of these conditions is not met, the conveyor stops and will start automatically 
when the conditions are met. The transport operation has a certain duration. 

The transformation rules express local changes of the graphs and are therefore 
very suitable to describe the local transformations of the model states, on which the 
description of its behaviour is based. A graph transformation rule is a formal concept 
that precisely defines the model's behaviour through preconditions, postconditions and 
transformation steps ordered only by the causal dependence of the actions, which 
facilitates the application of independent rules in an arbitrary order. 

The semantics of the behavioural dimension is given by the execution of the 
functions that implement the behavioural rules [D3.3]. Executing a behavioural rule 
starts with matching it in a model, continues with checking the execution conditions, 
then if the conditions are met the rule is applied and the operation is performed in the 
OperationCode field, otherwise the rollback operation is performed. 
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Fig. 13 highlights the step-by-step execution of an MLMP model. 

 
Fig.13. Step by step execution 

 
Fig.14. highlights the execution of a step in the execution of an MLMP model. We notice 
that the values of the attributes change at each step according to the behavioural rules. 

 
Fig.14. A step in applying behavioural rules 

 
The dynamic behaviour of an MLMP model over time is accomplished by generic 

algorithms that implement the behavioural transformations. The simulation begins by 
initializing the system with data describing its initial state. The dynamics of the system 
are accomplished by the succession of the behavioural transformations executed. The 
semantics of an MLMP defines how process tokens are propagated through the arcs and 
objects of a model. 

In the modelling method concept the simulation of a model is based on 
mechanisms and algorithms that are written in a programming language. The behaviour 
of the model is described by rules that specify how expressions are evaluated and 
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commands executed. These rules provide an operational semantic that provides a 
language implementation.  
 



Public D3.4. Design (modelling) tool for the Factory of the Future 
 

 

 Page 17   
 
 

3 Conclusions 
 

 This paper demonstrates the feasibility of the theoretical concepts presented in 
[D3.3] and provides motivational arguments for the implementation of DSMLs as basic 
components of the modelling method concept. The concepts that represent the lexical 
atoms of language and the relationships between them determine the design principles 
of flexible manufacturing systems as structure, components and operations. The flexible 
manufacturing cell model becomes in this context a structure based on autonomous, 
distributed, cooperative and intelligent modules, able to fulfil the specific functions of 
the manufacturing process. 

Although the developed DPPT is only an initial version with a minimal set of 
facilities, it highlights the advantages of such a diagrammatic DSML. A DSML, with a small 
set of well-chosen domain concepts, can have complex semantics to cover the modelling 
domain. This is due to the fact that the behavioural dimension of the models is 
embedded at the metamodel level. Also, this semantic load is due to the unlimited 
complexity of the relations between the lexical atoms of a diagrammatic language in 
contrast to the limited relations between the lexical atoms of the textual languages. 

We could say that the transition from programming languages to domain-specific 
diagrammatic modelling languages is as important as the transition from programming 
in assembly languages to programming in high-level languages. As we can see such a 
language is also intuitive and easily accessible due to its visual character especially if the 
notations used for atomic components are well chosen. These features of a domain-
specific diagrammatic modelling language make it usable in all domain-specific 
modelling phases due to the fact that it is accessible to all parties involved in the 
modelling process. 
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