

Project Title:

THE FOF-DESIGNER:
DIGITAL DESIGN SKILLS FOR FACTORIES OF THE FUTURE

Project Acronym:

DigiFoF

Grant Agreement number:
2018-2553 / 001-001

Project Nr. 601089-EPP-1-2018-1-RO-EPPKA2-KA

Subject:
D3.4 Design (modelling) tool for the Factory of the Future

Dissemination Level:

Public

Lead Organisation:
ULBS

Project Coordinator:

ULBS

Contributors:
UNIBIAL, BOC, OMiLAB

Reviewers:

OMiLAB

Revision Preparation date Period covered Project start date Project duration
V1 October 2020 Month 14 -22 01/01/2019 36 Months

This project has received funding from the European Union’s EACEA Erasmus+ Program Key
Action 2 - Knowledge Alliances under the Grant Agreement No 2018-2533 / 001-001

Public D3.4. Design (modelling) tool for the Factory of the Future

 Page 2

Table of contents
1 Introduction ... 3
2 The MLMP Language ... 4

2.1 MLMP Syntax.. 5
2.2 MLMP Semantics .. 9

3 Conclusions ... 17
4 References .. 18
5 Annex A. List of Abbreviations... 19

Public D3.4. Design (modelling) tool for the Factory of the Future

 Page 3

1 Introduction

The flexibility of manufacturing processes is one of the major conditions for
increasing the competitiveness of the factory of the future, in the current conditions of
competition. The essential support for the design of flexible production lines is a
combination of modelling and simulation. Modelling and simulation provide the facility
to create, test, compare and optimize manufacturing processes with minimal costs,
before they are physically built. Also, the models are primary artefacts for the
generation of software components that coordinate and supervise the physical
manufacturing process. Thus, the manufacturing process becomes an arrangement of
workstations and transportation units coordinated and supervised by a computer
system generated from an optimized model, which is able to adapt, with a minimum of
human intervention in order to manufacture a range of products.

The efficient specification of a model, to be a primary artefact, requires a
description of the properties of the system in an appropriate modelling language.
Therefore, the language chosen to specify a model must facilitate the representation of
this model in a clear, simple form that concentrates all the information necessary to
achieve the goal. Contemporary models are characterized by a great diversity and
complexity, which makes it impossible to specify them only with existing languages.
Thus, there is a need to build new modelling languages, i.e. there is a need to develop
domain-specific modelling languages (DSML), which would allow the efficient
specification of all concepts in the field of modelling [Fowler2010]. The development of
DSMLs thus becomes an integral part of the modelling process.

For a modelling language to be usable, it must be integrated into a modelling tool.
The reference model of a modelling tool is, in our case, the concept of a modelling
method that abstracts and integrates the components of a modelling tool.

A modelling method however is a concept [Karagiannis&Kühn2002, Bork2019]
that consists of two components: (1) a modelling technique, which is divided in a
modelling language and a modelling procedure, and (2) mechanisms & algorithms
working on the models described by a modelling language. The modelling language
contains the elements with which a model can be described. The modelling procedure
describes the steps applying the modelling language to create results, i.e., models.
Algorithms and mechanisms provide “functionality to use and evaluate” models
described by a modelling language. Combining these functionalities enables the
structural analysis, as well as the simulation of models.

The modelling tool that implements the concept of modelling method presented
in [D3.3] we called it the Digital Production Planner Tool (DPPT) and we implemented it
on the ADOxx metamodeling platform. The main component of this tool is the Modelling
Language for Manufacturing Processes (MLMP), which we will present in the following.

Public D3.4. Design (modelling) tool for the Factory of the Future

 Page 4

2 The MLMP Language

We will define a Modelling Language for Manufacturing Processes (MLMP)
designed specifically for specifying and optimizing manufacturing processes. MLMP is a
language for modelling manufacturing processes to represent the logical and functional
dependencies of the activities of a manufacturing process. The objective of the MLMP
language is the conceptual integration of the functional perspective of the
manufacturing processes in order to optimize them. The language is addressed to the
Digital Production Planner (DPP).

The tool should support the user to find a solution to a design problem. A design
problem is formulated as an assortment of products characterized by the type of
material and quantity that must be produced under some time and cost constraints.

Because the most intuitive form of a model is the diagrammatic one, we chose to
build a diagrammatic language.

Diagrammatic models are, generally, graphs with certain constraints on their
components, in which nodes and arcs are interpreted as a concept in the field of
modelling [Wolter2015, Karagiannis2016]. Designing a new visual DSML involves
defining the syntax and semantics of the modelling domain. Defining the syntax of a
DSML involves associating atomic concepts in the modelling domain with suggestive
visual symbols and defining formal rules for composing these atomic concepts into
complex concepts. Defining the semantics of modelling languages involves defining a
semantic domain and mapping syntactic constructions to this semantic domain.
Therefore, the syntax of a language is a way of expressing and manipulating semantics.

The modelling language will have to provide mechanisms for specifying the static
dimension of a model and the modelling instrument will have to include mechanisms
and algorithms for simulating the behavioural dimension of the model. Both dimensions
of a model, the static dimension and the behavioural dimension, are characterized by
syntax and semantics. The atomic concepts in the specific domain of MLMP language
modelling are: Buffers, Workstations, Transport Machines and Ports.

In Fig. 1 we have an example of a manufacturing process model specified in terms
of the MLMP language integrated in the Digital Production Planner Tool. The specified
model contains: two transporters, namely, a conveyor (Conveyor1) and a manipulator
(Manipulator1); a workstation (Workstation1) and six buffers and all these components
are connected via material ports. The conveyor transports materials from buffer B1 to
buffer B2. The manipulator alternately transports materials from buffers B3 and B4 to
buffers B5 and B6. The workstation is fed from buffer B2, processes these materials and
deposits the processing result in buffers B3 and B4.

Public D3.4. Design (modelling) tool for the Factory of the Future

 Page 5

Fig.1. An example of an MLMP model

2.1 MLMP Syntax
A diagrammatic model is characterized by two dimensions, a static dimension and

a behavioural dimension. Both dimensions of a model must be specified by its own
syntax. In the case of the MLMP language, the behavioural dimension is specified
formally, syntactically and semantically, at the metamodel level and is included in the
algorithms and mechanisms component of the modelling method concept [D3.3].

Defining the syntax of the static dimension of a model involves associating
suggestive notations to atomic concepts in the specific domain of modelling, which will
also be the lexical atoms of the MLMP language. Therefore, the atomic concepts of the
language will be Buffers, Workstations, Transport Machines and Ports, which will be
represented graphically as the nodes of a graph, and the relations between them will be
represented by the arcs of the graph.

Buffers are temporary warehouses in the manufacturing flow and are
characterized by the type of material they can store, by the maximum amount of
materials they can store and by the amount stored at a time. These features will be
syntactically denoted by attribute names. Buffers are components that store material
without transforming it, so it must have all material ports of the same type. The
maximum buffer capacity is fixed and cannot be extended (constant attribute). Their
variable attribute is the current content, which can vary between 0 and the maximum
capacity. The buffer cannot be loaded above the maximum capacity and cannot be
unloaded if it is empty. Buffers are passive components, they are filled and emptied by
other components with which they are connected.

Public D3.4. Design (modelling) tool for the Factory of the Future

 Page 6

In Fig. 2 we can see the symbolic notation that we attributed to this type of
component. Attribute names are: Name, MaterialType, Capacity, OccupiedCapacity.

Fig. 2. Buffer notation

Workstations are the components that perform the operations of assembling

subassemblies or transforming some material entities into other material entities. These
concepts are components in the manufacturing flow characterized by the types and
quantities of input material and by the types and quantities of output materials for each
operation that can be performed in that workstation.

Workstation are components that transform materials. So, they must have at least
one input and one output port of different type. They must allow the definition of
operations that describe how many units of which materials are needed and which
number of units based on which materials are produced through this operation.

In Fig. 3 we can see the symbolic notation that we attributed to this type of
component. Attribute names are: Name, Duration, OperationCode, and a set of
component records (MaterialType, MaterialAmountIn, MaterialAmountOut).

Fig.3. Workstation notation

Transport machines are components of the manufacturing flow that transport

material entities between workstations, in principle from one buffer to another. These
concepts are components in the manufacturing flow characterized by the types and
quantities of materials that can be transported from one buffer to another.

Transport machines are components that transfer material without transforming
it. They only change the position of material from the input buffer to the output buffer.
So, they will have at least one material input port and output port for each material that
is transported and the mass balance must be respected on the same material – number
of entering units = number of exiting units.

The conveyers transport only one material so all ports are of the same type and
the defining characteristics is the throughput – number of material units transported in
the time unit.

The automated guided vehicle (AGV) is practically a mobile buffer. It has all
attributes and behaviour of a buffer, but it can connect and disconnect its ports from
the corresponding ports of buffers and can move between preprogramed positions.
Also, it is an “active” component, initiating the loading unloading actions as soon as it is

Public D3.4. Design (modelling) tool for the Factory of the Future

 Page 7

docked on buffer. So, all considerations concerning the interaction between buffers and
components apply here.

The manipulator is a flexible transporter that can transfer multiple types of
materials between different in and out ports of the same type. The most usual example
is a manipulator that can handle different types of material moving them between
different sub lines. There must be at least an in out pair of ports for each material type
that is handled by the manipulator. At one moment the manipulator works only
between one pair of ports of the same type.

In Fig. 4 we can see the symbolic notation that we attributed to the three types of
conveyors, namely Fig. 4a contains the notation for the conveyor type, Fig. 4b contains
the notation for the AGV type, and Fig. 4c contains the notation for the manipulator
type. The attribute names for the conveyor type are: Name, MaterialType, CapacityUnit,
Capacity, TransportTime, OperationCode, and for the manipulator and AGV types there
is a simple Name attribute and a set of structured records (MaterialType,
TransportQuantity, TransportTime, OperationCode).

 a. Conveyor b. AGV c. Manipulator

Fig.4. Transport machines notations

Ports are the components in the manufacturing flow that connect the flow of
output material entities from the components with corresponding inputs to other
components. These concepts are components in the manufacturing flow characterized
by the types of materials and the direction of entry or exit. In Fig.5. we can see the
symbolic notation that we attributed to this type of component. Attribute names are:
MaterialKind, PortName, PortDirectionType.

MLMP diagrammatic models are graphs G = (X, Γ), where X is a set of nodes such
as Buffers, Workstations, Transport Machines and Ports and the arcs represent the flow
of entities between these components. The syntax of these models imposes constraints
such as: the model has to be represented by a connected graph; any two components
are connected by at most one arc; between any two components there must be a port
component etc. These syntactic restrictions are introduced at the metamodel level
[D3.3].

Fig.5. Material port notation

The control elements are components that transfer only information, so that they

have only information ports - not necessarily all of the same information type. The
control element is the ideal point for interfacing the model with other modules. The
control element executes the control algorithm. The program reads feedback messages
from the process from the input ports or commands from other command items.

Public D3.4. Design (modelling) tool for the Factory of the Future

 Page 8

Depending on the current status and inputs, commands are generated, that are placed
at outputs.

In Fig. 6 we can see the notations used for the control elements (Fig. 6a) and the
information ports (Fig. 6b).

 a. Control element b. Information port

Fig. 6. Control element and information port notation

MLMP is a graphical language for describing manufacturing processes at the level
of manufacturing logic, easy to understand and use.

Not any graph that has the nodes made of concepts specific to a manufacturing
process (workstations, transport systems, collection buffers and ports) is a correct
manufacturing model. For example, the graph must be connected and may not have
more than one arc between two elements, etc.

We will define an MLMP model as a graph with a set of syntactic restrictions.
A MLMP model is a directed graph 𝓖𝓖 = (X, Γ, σ, θ) where

X is a set of objects (concepts in our model) that represent the nodes of the graph.
Γ is a set of arcs (connections in our model).
And which satisfies the following properties:

1. 𝓖𝓖 is a connected graph
2. There is only one arc between any two nodes.
3. On the set of nodes X we have a partition. This means that each node of type X of the

graph will represent in the Set category a distinct set of objects of the same type and
these sets are disjoint two by two. If we denote the disjoint union with ⊔ then:
X=XWS ⊔XTS⊔XBF⊔XMP⊔XIP;
where
XWS is a set of workstations for the primary components;
XTS is a set of transport systems for material components;
XBF is a set of collection buffers for material components;
XMP is a set of material ports;
XIP is a set of information ports.

4. σ and θ are functions σ,θ:Γ→X which assigns to each arc r∈Γ the source and target
objects σ(r), θ(r)∈X. Each node of type Γ from the graph of the sketch will represent
in the Set category a set of arcs between the specific concepts of the models, a set
characterized by the source concept and the target concept. Therefore, Γ is a subset
of the union of all the pairs of concepts that interact with each other:
Γ⊆(XWS×XMP)∪(XMP×XWS)∪(XBF×XMP)∪(XMP×XBF)∪(XTS×XMP)∪(XMP×XTS)
∪(XIP×XWS)∪(XIP×XTS)∪(XIP×XBF).
The set Γ of arcs of a model is partitioned into disjoint subsets as follows:
Γ=ΓWSMP⊔ΓMPWS⊔ΓBFMP⊔ΓMPBF∪ΓTSMP∪ΓMPTS ⊔ΓIPWS⊔ΓIPTS⊔ΓIPBF

5. The XTS set is also partitioned into disjoint subsets:
XTS = XAVG⊔XCBP⊔XMAN where

Public D3.4. Design (modelling) tool for the Factory of the Future

 Page 9

XAVG is a set of automated guided vehicles
XCBP is a set of conveyors, belts, pipes
XMAN is a set of manipulators

As we can see the syntactic definition of an MLMP model, introduces a series of
partitions on the set of concepts and connections, as well as sub partitions on the set of
transport systems. In addition, the definition includes connection constraints and a
limited number of arcs between different types of nodes.

The static dimension of an MLMP model is a graph with nodes of the types
described above, i.e. Buffers, Workstations, Transport Machines and Ports that are
endowed with attributes specific to each type. Although the behavioural dimension of a
model is dependent on the static dimension, it still reflects the running model, i.e. its
transition from one static instant to another. Therefore, each instant of the static
dimension represents a state of the model. The transition from one state to another will,
in our approach, have to be made by a set of behavioural rules that make up the
behavioural dimension of the model. We defined behavioural syntax at the metamodel
level by behavioural signatures [D3.3].

2.2 MLMP Semantics

The atomic concepts described in section 2.1 are in accordance with the principles

of designing flexible manufacturing systems as structure and operations are integrated
from a syntactic point of view. They propose structures based on autonomous,
distributed, cooperative and intelligent components, which can be assembled to
perform the specific functions of manufacturing processes. The manufacturing process
specification mechanism is based on the top-down functional breakdown of the system
into specific components, configurable by attribute values.

The semantics of the static dimension is characterized by the values of the attributes
and the graph structure of the model, and is therefore defined by mapping the attributes
to data domains and the syntactically correct graph structures to known structures such
as sequential structures, joins, forks, etc.
The mapping of the attributes to the data domains:
Buffers – Name:string, MaterialType:string, Capacity:integer, OccupiedCapacity:integer
In Fig.7. we can see how to customize a buffer component.

Fig. 7. Buffer customization

Public D3.4. Design (modelling) tool for the Factory of the Future

 Page 10

Workstations – Name:string, (MaterialTypeIn:string, MaterialAmountIn:integer,
MaterialTypeOut:string, MaterialAmountOut:integer, Duration:time):record,
OperationCode:longstring
In Fig.8. we can see how to customize a workstation component.

Fig.8. Workstation customization

Transport Machines - Customization is done according to the attributes defined for each
type of transport machine.
Conveyors are characterized by the attributes: Name: string, (MaterialType: string,
CapacityUnit: integer, Capacity: integer, TransportTime: time, OperationCode:
longstring): record
In Fig. 9 we can see how to customize a conveyor component.

Public D3.4. Design (modelling) tool for the Factory of the Future

 Page 11

Fig.9. Conveyor customization

Transport machines of type Manipulator are characterized by the attributes: Name:
string, (MaterialType: string, TransportQuantity: integer, TransportTime: time,
OperationCode: longstring): record
In Fig. 10 we can see how to customize a manipulator component.

Public D3.4. Design (modelling) tool for the Factory of the Future

 Page 12

Fig.10. Manipulator customization

Transport machines of type AGV are characterized by the attributes: Name: string,
(MaterialType: string, TransportQuantity: integer, TransportTime: time, OperationCode:
longstring): record
In Fig.11. we can see how to customize an AGV component.

Public D3.4. Design (modelling) tool for the Factory of the Future

 Page 13

Fig. 11. AGV customization

Ports - Port type components are characterized by the attributes: Name: string,
MaterialKind: string, PortName: string, PortDirectionType: enum {Incoming, Outgoing},
Direction {Right, Left, Up, Down}.
In Fig. 12 we can see how to customize a port component.

Public D3.4. Design (modelling) tool for the Factory of the Future

 Page 14

Fig.12. Port customization

The semantics of the behavioural dimension captures the behaviour of the active

components of the model. In the case of the MLMP language, the semantics of the
behavioural dimension was implemented at the metamodel level through two
behavioural rules that simulate the behaviour of the two types of active components,
workstation and transport machine.

Each workstation is fed from one or more input buffers and deposits the
processing result in one or more output buffers that have limited capacities. A
workstation works asynchronously if it has raw material in the input buffers and enough
space in the output buffers. If one of these conditions is not met, the station stops and
will start automatically when the conditions are met. The processing operation has a
certain duration.

Each transport machine has a limited transport capacity and can transport several
types of components in specified quantities. A transport machine works asynchronously
if it has enough parts in the input buffer and also has enough space in the output buffer.
If one of these conditions is not met, the conveyor stops and will start automatically
when the conditions are met. The transport operation has a certain duration.

The transformation rules express local changes of the graphs and are therefore
very suitable to describe the local transformations of the model states, on which the
description of its behaviour is based. A graph transformation rule is a formal concept
that precisely defines the model's behaviour through preconditions, postconditions and
transformation steps ordered only by the causal dependence of the actions, which
facilitates the application of independent rules in an arbitrary order.

The semantics of the behavioural dimension is given by the execution of the
functions that implement the behavioural rules [D3.3]. Executing a behavioural rule
starts with matching it in a model, continues with checking the execution conditions,
then if the conditions are met the rule is applied and the operation is performed in the
OperationCode field, otherwise the rollback operation is performed.

Public D3.4. Design (modelling) tool for the Factory of the Future

 Page 15

Fig. 13 highlights the step-by-step execution of an MLMP model.

Fig.13. Step by step execution

Fig.14. highlights the execution of a step in the execution of an MLMP model. We notice
that the values of the attributes change at each step according to the behavioural rules.

Fig.14. A step in applying behavioural rules

The dynamic behaviour of an MLMP model over time is accomplished by generic

algorithms that implement the behavioural transformations. The simulation begins by
initializing the system with data describing its initial state. The dynamics of the system
are accomplished by the succession of the behavioural transformations executed. The
semantics of an MLMP defines how process tokens are propagated through the arcs and
objects of a model.

In the modelling method concept the simulation of a model is based on
mechanisms and algorithms that are written in a programming language. The behaviour
of the model is described by rules that specify how expressions are evaluated and

Public D3.4. Design (modelling) tool for the Factory of the Future

 Page 16

commands executed. These rules provide an operational semantic that provides a
language implementation.

Public D3.4. Design (modelling) tool for the Factory of the Future

 Page 17

3 Conclusions

 This paper demonstrates the feasibility of the theoretical concepts presented in
[D3.3] and provides motivational arguments for the implementation of DSMLs as basic
components of the modelling method concept. The concepts that represent the lexical
atoms of language and the relationships between them determine the design principles
of flexible manufacturing systems as structure, components and operations. The flexible
manufacturing cell model becomes in this context a structure based on autonomous,
distributed, cooperative and intelligent modules, able to fulfil the specific functions of
the manufacturing process.

Although the developed DPPT is only an initial version with a minimal set of
facilities, it highlights the advantages of such a diagrammatic DSML. A DSML, with a small
set of well-chosen domain concepts, can have complex semantics to cover the modelling
domain. This is due to the fact that the behavioural dimension of the models is
embedded at the metamodel level. Also, this semantic load is due to the unlimited
complexity of the relations between the lexical atoms of a diagrammatic language in
contrast to the limited relations between the lexical atoms of the textual languages.

We could say that the transition from programming languages to domain-specific
diagrammatic modelling languages is as important as the transition from programming
in assembly languages to programming in high-level languages. As we can see such a
language is also intuitive and easily accessible due to its visual character especially if the
notations used for atomic components are well chosen. These features of a domain-
specific diagrammatic modelling language make it usable in all domain-specific
modelling phases due to the fact that it is accessible to all parties involved in the
modelling process.

Public D3.4. Design (modelling) tool for the Factory of the Future

 Page 18

4 References

1. [Karagiannis2016] D. Karagiannis, H.C. Mayr, J. Mylopoulos, Domain-Specific
Conceptual Modeling Concepts, Methods and Tools. Springer International
Publishing Switzerland (2016)

2. [Bork2020] Dominik Bork ∗, Dimitris Karagiannis, Benedikt Pittl, A survey of modeling
language specification techniques, Information Systems 87 (2020) 101425, journal
homepage: www.elsevier.com/locate/is

3. [Fowler2010] M. Fowler, R. Parsons, Domain Specific Languages, 1st ed. Addison-
Wesley Longman, Amsterdam, 2010.

4. [Bork2019] D. Bork, R.A. Buchman, D. Karagiannis, M. Lee, E.T. Miron, An Open
Platform for Modeling Method Conceptualization: The OMiLAB Digital Ecosystem,
Communications of the Association for Information Systems, forthcoming,
http://eprints.cs.univie.ac.at/5462/1/CAIS-OMiLAB-final-withFront.pdf (2019)

5. [Craciunean2018] D.C. Crăciunean, D. Karagiannis, Categorical Modeling Method of
Intelligent WorkFlow. In: Groza A., Prasath R. (eds) Mining Intelligence and
Knowledge Exploration. MIKE Lecture Notes in Computer Science, vol 11308.
Springer, Cham (2018).

6. [Craciunean2019]D.C. Crăciunean, Categorical Grammars for Processes Modeling,
International Journal of Advanced Computer Science and Applications(IJACSA),
10(1), (2019)

7. [Wolter2015] Uwe Wolter, Zinovy Diskin, The Next Hundred Diagrammatic
Specification Techniques, A Gentle Introduction to Generalized Sketches, 02
September 2015 : https://www.researchgate.net/publication/253963677,

8. [Plump2019] D. Plump, ‘Computing by graph transformation: 2018/19’, Department
of Computer Science, University of York, UK, Lecture Slides, 2019.

9. [Campbell2019] G. Campbell, B. Courtehoute and D. Plump, ‘Linear-time graph
algorithms in GP2’, Department of Computer Science, University of
York, UK, Submitted for publication, 2019. [Online]. Available:
https://cdn.gjcampbell.co.uk/2019/Linear-Time-GP2-Preprint.pdf.

10. [Campbell2018] G. Campbell, ‘Algebraic graph transformation: A crash course’,
Department of Computer Science, University of York, UK, Tech. Rep., 2018. [Online].
Available: https://cdn.gjcampbell.co.uk/2018/Graph-Transformation.pdf.

11. [Plump2010] D. Plump, ‘Checking graph-transformation systems for confluence’,
ECEASST, vol. 26, 2010. DOI: 10.14279/tuj.eceasst.26.367.

12. [Ehrig2015] Hartmut Ehrig, Claudia Ermel, Ulrike Golas, Frank Hermann, Graph and
Model Transformation General Framework and Applications, Springer-Verlag Berlin
Heidelberg 2015

13. [Milner2009] R. Milner, The Space and Motion of Communicating Agents, Cambridge
University Press, (2009)

14. [D3.3] Design method for the Factory of the Future

http://eprints.cs.univie.ac.at/5462/1/CAIS-OMiLAB-final-withFront.pdf
https://www.researchgate.net/publication/253963677

Public D3.4. Design (modelling) tool for the Factory of the Future

 Page 19

5 Annex A. List of Abbreviations

AGV Automated Guided Vehicle
DSML Domain Specific Modeling Language
MLMP Modeling Language for Manufacturing Processes
DPP Digital Production Planner
DPPT Digital Production Planner Tool

Public D3.4. Design (modelling) tool for the Factory of the Future

 Page 20

6 Annex B. List of Figures

Fig.1. An example of an MLMP model 5
Fig.2. Buffer notation 6
Fig.3. Workstation notation 6
Fig.4. Transport machines notations 7
Fig.5. Material port notation 7
Fig.6. Control element and information port notation 8
Fig.7. Buffer customization 9
Fig.8. Workstation customization 10
Fig.9. Conveyor customization 11
Fig.10. Manipulator customization 12
Fig.11. AGV customization 13
Fig.12. Port customization 14
Fig.13. Step by step execution 15
Fig.14. A step in applying behavioural rules 15

	1 Introduction
	2 The MLMP Language
	2.1 MLMP Syntax
	2.2 MLMP Semantics

	3 Conclusions
	4 References
	5 Annex A. List of Abbreviations
	6 Annex B. List of Figures

